1) Evaluate the line integral $\oint_{C} x y d x+x^{2} y^{3} d y$ where C is the triangle with vertices $(0,0),(1,0),(1,2)$ by two methods:
a) Directly.
b) Using Green's Theorem.

Use Green's Theorem to evaluate the line integral along the given positively oriented curve.
2) $\int_{C} e^{y} d x+2 x e^{y} d y$ where C is the square with sides $x=0, x=1, y=0$, and $y=1$.
3) $\int_{C}\left(y+e^{\sqrt{x}}\right) d x+\left(2 x+\cos y^{2}\right) d y$ where C is the boundary of the region enclosed by the parabolas $y=x^{2}$ and $x=y^{2}$.
4) $\int_{C} x e^{-2 x} d x+\left(x^{4}+2 x^{2} y^{2}\right) d y$ where C is the boundary of the region between the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.
5) $\int_{C} 2 \arctan \frac{y}{x} d x+\ln \left(x^{2}+y^{2}\right) d y$ where $C: x=4+2 \cos \theta, \quad y=4+\sin \theta$.

Use Green's Theorem to evaluate $\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{r}}$. (Check the orientation of the curve before applying the theorem.)
6) $\overrightarrow{\mathbf{F}}(x, y)=\left\langle y^{2} \cos x, x^{2}+2 y \sin x\right\rangle$ where C is the triangle from $(0,0)$ to $(2,6)$ to $(2,0)$ to $(0,0)$.
7) $\overrightarrow{\mathbf{F}}(x, y)=\left(3 x^{2}+y\right) \mathbf{i}+4 x y^{2} \mathbf{j}$ where C is the boundary of the region lying between the graphs of $y=\sqrt{x}, y=0$ and $x=9$.

Use a line integral to find the area of the region R.
8) Region bounded by the graphs of $x^{2}+y^{2}=a^{2}$
9) Triangle bounded by the graphs of $x=0,3 x-2 y=0$ and $x+2 y=8$.
10) Region bounded by the graphs of $y=5 x-3$ and $y=x^{2}+1$.

